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Abstract 

 

HABITAT DISTRIBUTION AND FROND REORIENTATION AS PHOTOPROTECTION 

AND DROUGHT-AVOIDANCE MECHANISMS IN CHRISTMAS FERN 

(POLYSTICHUM ACROSTICHOIDES) IN THE SOUTHERN APPALACHIAN 

MOUNTAINS 

 

David C. Nielsen 

B.S., Appalachian State University  

 

 

Chairperson:  Howard S. Neufeld 

 

 

 Christmas fern (Polystichum acrostichoides (Michx.) Schott) is a ubiquitous 

wintergreen herb found in the forests of the Appalachian Mountains, yet it is distributed 

asymmetrically on the landscape, favoring north-facing slopes and shady stream banks. In 

late autumn, the fronds of Christmas fern undergo an irreversible reorientation, bending at 

the base of the stipe and lying flat on the forest floor. These fronds maintain high chlorophyll 

concentrations throughout winter and are photosynthetically active on warm winter days and 

in early spring before canopy emergence. In three populations in the Appalachian State 

University Biological Preserve, I prevented fronds from reorienting using wooden dowels 

and floral wire, artificially holding them up over winter. The fronds that were prevented from 

reorienting to a prostrate position suffered severe photoinhibition characterized by extensive 

leaf necrosis coupled with significant declines in light-saturated gas exchange, chlorophyll 

fluorescence (Fv/Fm), and total chlorophyll, while a control group showed little or no 

declines as winter progressed. “Surrogate ferns” were constructed and mounted with light 



 v

sensors in order to characterize the light environment at the leaf level on north- and south-

facing slopes. Inclined fronds experienced much higher light levels than prostrate fronds 

(oriented horizontally), on both slopes, and the sensor on the south-facing slope experienced 

22 days in which light exceeded 500 µmol m-2 s-1 and the air temperature at the leaf level was 

below freezing. Conversely, on the north-facing slope, these conditions only occurred on one 

day. This result suggests that frond reorientation is sufficient to prevent photoinhibition in 

overwintering fronds of Christmas fern by reducing winter light, and may be a significant 

factor limiting its distribution on south-facing slopes where it is bright and cold during 

winter. Christmas ferns demonstrated remarkable resilience in a controlled dry-down, with 

little physiological decline as midday water potentials exceeded -1.0 MPa and soil water 

content approached 0%. Presently, it is unclear how fern water relations contribute to frond 

reorientation or distribution on the landscape, but the microclimate data suggest that south-

facing slopes are not dry enough to induce significant physiological stress on Christmas fern, 

and that winter light may have more influence. Forecasted changes in local climate may alter 

the range and distribution of Christmas fern. Our results provide insight into how this species 

might be affected, with significant ecological implications for understory herbs in our region.  
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Foreword 

 

 This thesis will be submitted to New Phytologist, an international peer-reviewed 

journal; it has been formatted according to the style guide for that journal.  
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Introduction 

 

 Ferns evolved 360 million years ago and at least 160 million years before 

angiosperms. Fossil evidence indicates that some species are virtually identical to their 

ancestors from 180 million years ago or more (Taylor et al., 2009; Li et al., 2014; Rothfels et 

al., 2015). The ancient and highly conserved physiology of ferns has allowed them to persist 

in sympatry with seed plants in myriad habitats worldwide, rather than succumb to 

competitive exclusion (Watkins et al. 2007). The persistence of ferns, despite fierce 

competition, merits ecophysiological investigation. Studies of ferns may yield new 

information regarding the evolution of early vascular plant physiology and lend insight into 

how they might respond to anticipated anthropogenic climatic changes (Agrawal et al., 2004; 

Goldblum & Kwit, 2012; Wiens, 2016).  

As basal vascular plants, ferns lack true vessels and secondary xylem typical in 

angiosperms, and support far less photosynthetically active foliage on a per-xylem-area basis 

(Pittermann et al., 2011). Most extant ferns have a tracheid-based primary xylem with 

heavily pitted lateral walls and highly porous pit membranes that are relatively vulnerable to 

drought-induced air embolisms (cavitation) (Brodersen et al., 2015). This may limit fern 

distribution to relatively moist, shady habitats, where evaporative demand and the risk of 

drought is low although there are exceptions and ferns have evolved a wide range drought 

adaptation strategies (Kessler & Siorak, 2007; Anthelme et al., 2011; McAdam & Brodribb, 

2013). For evergreen vs deciduous ferns, the trade-offs may be between having higher 
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hydraulic conductivities and stomatal conductances, leading to high productivity in high-light 

environments, but with an increased risk of cavitation due to drought, while shade-adapted 

evergreen species, with slower growth and lower stomatal conductances, may trade high 

productivity for greater drought tolerance, a necessity for leaves that must resist winter-

desiccation (Brodersen et al., 2012). 

Some evidence suggests stomatal responses to perturbations in vapor pressure deficit 

(VPD), elevated ambient carbon dioxide (CO2), and desiccation are more nuanced in 

angiosperms than in ferns, which have conservative stomata and tend to reduce carbon 

assimilation (A) under mild water stress (Brodribb et al., 2009; Brodersen et al., 2015). 

Additionally, ferns regularly reach photosynthetic saturation at light levels less than half that 

of angiosperms (Franks & Britton-Harper, 2016). These adaptations often confer water-use 

efficiencies in angiosperms which are orders of magnitude greater than those of ferns 

(Davies, et al., 2002; Tyree & Zimmermann, 2002; Sperry, 2003). These studies, coupled 

with observations of fern preference for moist (mesic) and dark habitats, suggest that this 

clade is very sensitive to drought, and physiological processes are highly dependent on the 

water status of the plant (Damour et al., 2010; Watkins et al., 2010; McAdam & Brodribb, 

2015). Despite these observations, there are many species that dwell in arid or Mediterranean 

climates and are very resistant to seasonal or prolonged drought, further suggesting 

physiological versatility (Liao et al., 2008; Farrant et al., 2009).  

The understory wintergreen, or winter deciduous, Christmas fern (Polystichum 

acrostichoides (Michx, Schott) represents one of several understory herbaceous plants that 

dwell in low-light, mesic habitats in the Appalachian Mountains. Habitat preferences reflect 

the life-history strategies of this species, and the selective pressures in these environments 
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have produced a water-conservative, slow-growing life form. In addition, there is abundant 

evidence that trade-offs occur between drought and shade-tolerance, since the former 

requires an extensive investment in belowground biomass (roots) to obtain sufficient water 

whereas the latter requires greater investment in above-ground tissues such as leaves, often at 

the expense of root growth (Smith & Huston, 1989). Thus, shade-tolerant species are often 

considered intolerant of severe drought (Valladares & Pearcy, 2002). Compared to conifers 

and angiosperms, ferns generally respond to changes in frond water potential (ψf) with a 

relatively large decline in stomatal conductance (gs) and a resultant decline in A (Pittermann 

et al., 2015; Franks & Britton-Harper, 2016), and this response is more pronounced when 

water is abundant (Talbot et al., 2003). In simple terms, ferns growing in mesic habitats 

willingly sacrifice carbon gain in order to conserve water while angiosperms and conifers 

have physiologies which allow them to maintain carbon gain under conditions of water stress 

(McDowell et al., 2008).  

Coupled with observations of habitat preference, the physiology of similar species 

suggests that Christmas fern may have stomata that respond conservatively to water stress in 

an effort to maintain a stable ψf, though these responses have not been studied in detail for 

this species (Damour et al., 2010; Watkins et al., 2010). However, the overwintering or 

“wintergreen” behavior observed in Christmas fern is associated with remarkably hardy 

foliage, and may influence these responses. Perennial ferns growing in Mediterranean 

climates often have high resistance to cavitation under moderate to severe drought 

conditions, and no observable decline in gs under high xylem tensions (Burns et al., 2017) 

which is in stark contrast to ferns growing in mesic habitats.  
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Presently, it is unclear where Christmas fern lands on this spectrum, given that it 

shares life history strategies with both groups. Furthermore, the habitat preference of 

Christmas fern is also driven by other factors in addition to water availability such as 

seasonal variations in light and heat load (Warren, 2008). The goal of this research is to 

elucidate the relative contribution of these abiotic factors and their potential roles in 

determining habitat preference for Christmas fern in the southern Appalachian Mountains. 

Christmas fern is ubiquitous in woodlands of the eastern United States (USDA Plants 

Database, 2017). In the southern Appalachians on well-drained soils, it is often the dominant 

understory herbaceous species, though abundance surveys suggest that it prefers north-facing 

slopes and creek beds (Greer et al., 1997; Tessier & Raynal, 2003; Warren, 2008, Patricia 

Cox personal communication 2015, this study – see Results section).  

Preference for north-facing slopes is common among understory herbaceous species, 

and evidently driven by topography-induced differences in microclimate (Shanks & Norris, 

1950; Hicks & Frank, 1984; Fekedulegn et al., 2003; Desta et al., 2004; Reudink et al., 2005; 

Holst et al., 2005, Horton et al., 2009). In the Northern hemisphere, southern exposures 

receive a greater input of solar radiation, and are warmer and drier as a result. These 

differences affect understory plant distribution in two broad ways; first, they increase 

desiccation due to higher evaporative demand and lower soil moisture, and second, 

photoinhibition may be more severe during high-light, low-temperature conditions during 

winter (Fekedulegn et al., 2003; Desta et al., 2004; Horton et al., 1996; Neufeld & Young 

2014). 

Warren (2008) found that the best predictive models of understory herbaceous plant 

distribution were winter-light and summer heat load, while Desta et al. (2004) suggested that 
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drought intolerance could best explain this distribution. High-light conditions on southern 

exposures, coupled with sub-freezing temperatures may cause damage to the photosynthetic 

apparatus during winter (Gu, et al., 2008; Russell et al., 2009; Tessier, 2014). Nonetheless, 

decreased canopy cover correlated with increased reproductive effort in Christmas fern, 

suggesting light and or heat intolerance may have long-term effects on fitness (Greer & 

McCarthy, 2000), especially if it adversely affects photophysiology.   

The relative importance of temperature, light, and water relations to the distribution 

of Christmas fern has not been fully elucidated at this point. Given its prevalence on north-

facing slopes and near creeks, I hypothesized that this species is extremely sensitive to water 

stress, and that water availability plays a key role in determining its habitat distribution. To 

test this, I deployed environmental monitoring stations on north and south-facing slopes and 

monitored light, temperature, and relative humidity at the leaf level for nearly a year. I 

hypothesized that south-facing sites would receive significantly greater solar input, especially 

after leaf fall in autumn, and consequently would be warmer and drier. To further 

characterize the drought sensitivity of this species, I performed a controlled dry-down 

experiment on potted plants in the University Greenhouse. I hypothesized that drought 

conditions would precipitate a decline in midday ψf followed by stomatal closure and 

reduced carbon assimilation. If this species is particularly sensitive to water stress, then 

stomatal conductance should be lowered at relatively mild levels of water stress, and this 

would provide evidence for why this species is restricted to relatively moist, shady habitats, 

such as on north-facing slopes. 

In fall, after the first few hard frosts, the fronds of Christmas fern undergo freezing-

induced leaf movements in which a specialized region of the stipe loses turgor allowing the 
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fronds to bend as if on a hinge yet maintaining xylem flow. These fronds reorient from an 

inclined to a prostrate position and remain so until they senesce in late spring (Figure 1). 

(Nooden & Wagner, 1997). In the Appalachian State University Biological Preserve, 

reorientation was observed after canopy senescence and leaf drop, and the majority of fronds 

remain exposed on the forest floor over most of the winter (except when self-shading occurs 

or when covered by forest debris).  

Presently, it is unclear why fronds of Christmas fern reorient to a prostrate position. 

Adams et al. (2004) found that many overwintering evergreens cannot utilize radiation under 

freezing conditions due to the production of reactive oxygen species which damage the 

photosynthetic apparatus, particularly photosystem II (PSII). Russell et al. (2009) showed 

that overwintering leaves of Rhododendron maxima were photoinhibited when prevented 

from reorienting on cold, bright winter days. I hypothesized that fronds exposed to high light 

in winter conditions would exhibit signs of photoinhibition including decreased Fv/Fm, 

photosynthesis, and chlorophyll, coupled with visible leaf necrosis. I further hypothesized 

that the microclimate differs between inclined and prostrate fronds, and tested this by 

artificially reorienting prostrate fronds to an inclined position and measuring light and 

temperature at the leaf level, as well as gas exchange.  

 

Figure 1: Thermonastic leaf movements of Christmas fern (Polystichum acrostichoides). Reorientation from an 

inclined or upright position (left) to a prostrate or flat position (right) occurs after the first few hard frosts. 

(Illustration by Catherine Alexander). 
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Materials and Methods 

 

Distribution Surveys 

Distribution surveys were conducted on December 1st, 2014 in four locations within 

the Appalachian State University Biological Preserve, though we stopped collecting data 

from one site in 2016 due to its distance from the other field sites (Figure 2). 

 The topography of the preserve provides an ideal study site, with four east/west 

running ridges. Each ridge has a predominately north or south-facing slope, respectively, and 

all four have similar physical and vegetative characteristics. 

 

 

Figure 2: Map of field sites, Appalachian State University Biological Preserve.  
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Study sites were located within two kilometers of one another and at similar 

elevations. Sites were chosen as representative samples of the understory. Vegetation 

consisted of moderately mature mixed hardwood overstory and sparse understory. 

Rhododendron maxima thickets are present at some of the sites. At the time of the survey, 

Christmas fern represented ~100% of understory herbaceous vegetation at all locations. 

At each location, on either side of the ridgeline (north-facing and south-facing), a 5 m 

x 5 m plot was designated 5-10 m downhill and the aspect, elevation, slope, and GPS 

coordinates were recorded at each location. The number of ferns within each plot was 

recorded.  

 

Microclimate 

Microclimate data were collected throughout winter beginning in September, 2016. 

Data collection stations were deployed on the north- and south-facing slopes of site 2. 

Weather data were retrieved from the stations and downloaded onto a laptop once or twice 

monthly. Campbell Scientific CR 1000 dataloggers equipped with quantum sensors (Apogee 

Instruments SQ-110. Logan, Utah) were deployed on a wood scaffolding or “surrogate fern” 

to monitor light levels at the average angle (60o) of inclined fronds (angles were measured in 

summer). On each “surrogate fern” light was measured in a north-facing direction and south-

facing direction as well as a horizontal direction (Figure 3). These dataloggers also collected 

air temperature and humidity measurements (Campbell Scientific SDI-12 temp and RH 

probe), as well as soil temperature data from 15 cm below the surface using copper-

constantan thermocouples. 
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Surface temperature of inclined and prostrate fronds was measured with a non-contact 

infrared thermometer (Omega OS425-LS. Norwalk, Connecticut). Volumetric water content 

of soil (%VWC) was measured at multiple locations on each north and south-facing plot 

(Campbell Scientific HydroSense II) equipped with 20 cm probes. These measurements were 

corroborated by determining the percent water content by mass at soil depths of 15 and 30 

cm. 

 

Figure 3: “Surrogate fern” equipped with quantum sensors were set on north- and south-facing slopes to 

provide a representation of the seasonal light environment experienced at the leaf level. The sensors were 

oriented North and South. Scale is grossly exaggerated to show detail. 

 

Frond Reorientation 

Before natural frond reorientation (October 1st, 2016), five individuals (4-6 fronds 

each) in each north-facing plot were fixed to an incline of approximately 60o using wooden 

dowels, wire mesh and floral wire. 

 

Photoinhibition 

Quantum efficiency (Fv/Fm) measurements of chlorophyll fluorescence were made 

on inclined and prostrate fronds using a Handy PEA Meter (Hansatech Instruments. King’s 

Lynn, UK), and steady-state, light-saturated gas exchange was measured using the Li-6400 
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Portable Photosynthesis System in years 2014/15 (data not reported) and the Li-6800 in years 

2016/17 (Li-Cor, Inc. Lincoln, Nebraska) equipped with extended reach cuvette. Cuvette 

conditions were: photosynthetically active radiation (PAR) = 2000 µmol m-2 s-1, ambient 

cuvette CO2= 400 ppm, temperature = 25oC, relative humidity ~50%. Measurements were 

made on two mid-rachis pinnae from each plant, which averaged ~1.8 cm2 each.  

Representative photographs were taken regularly and used to estimate the extent of and 

progression of visible necrosis during the treatment.  

 

Pigment analysis 

Chlorophyll and carotenoid concentrations for inclined and prostrate fronds were 

periodically measured between October 2016 and March of 2017. At each field site, ~1.0 cm2 

of leaf was collected from the mid-rachis pinnae of five inclined individuals and five 

prostrate individuals and immediately submerged in 3 mL of N,N – dimethylformamide 

(DMF) and allowed to extract for ~48 hours at 5°C in the refrigerator. Absorbances were 

measured on a UV-1800 Shimadzu spectrophotometer (Shimadzu Scientific Instruments, 

Columbia, MD). Chlorophyll and carotenoid concentrations were calculated using the 

equations described by Porra et al., (1989) and Wellburn (1994). 

 

Greenhouse Dry-down 

Before the first frost in the fall of 2016, 30 individual plants were harvested from a 

tract of University-owned land directly southwest of the Nature Preserve, with nearly 

identical habitat conditions as the field study sites. These individuals were established in pots 

(25 cm diameter, 30 cm deep) outside the University Greenhouse over winter. Rhizomes 
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were disturbed as little as possible and kept in native soil. The ferns were shaded at 30% full-

sun (70% shade) watered regularly, and kept in a raised bed (still in pots) to avoid root frost 

damage. In February 2017, these individuals were transferred to the University Greenhouse. 

In May, after the development of mature new fronds, I subjected half of these plants to water 

deprivation and monitored their physiology over a period of 22 days. Baseline measurements 

were taken on the treatment group and control group after they had been well-watered on day 

1. All measurements were made near midday (between 1:00 h and 14:00 h). Steady-state, 

light-saturated gas exchange was measured using the Li-6800 Portable Photosynthesis 

System equipped with the fluorescence cuvette. Cuvette conditions were: photosynthetically 

active radiation (PAR) = 2000 µmol m-2s-1, ambient cuvette CO2= 400 ppm, temperature = 

25OC, relative humidity ~50%. Measurements were made on two mid-rachis pinnae from 

each plant, which averaged ~1.8 cm2 each. Water potential (ψf) was measured on two mid-

rachis pinnae from each plant using a PMS Model 600 pressure chamber equipped with a 

grass compression gland (PMS Instruments, Albany OR). Finally, soil moisture (%VWC) 

was measured using the Campbell Scientific HydroSense II. 

 

Statistics 

For the protocols described above (with the exception of the data collected at the 

weather stations), the average of two or three samples was taken as the unit of replication. 

Two-tailed, paired t-tests were used to describe differences in inclined and prostrate fronds 

for the field experiment and two-tailed, two-sample t-tests were used to describe differences 

in the greenhouse dry-down with a significance level of p ≤ 0.05. Analyses of variance 

(ANOVA) were used to compare the means between sites and across months.  
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Results 

 

Microclimate 

Field sites 1-3 were located at an elevation of approximately 1050 m (3450 ft) and 

were separated longitudinally by about 100-150 m (see Figure 2). All field sites were 

equidistant from the ridge line (8-10 m). The average aspect for north-facing slopes was 38.7 

± 4.7oN by NE, and the average slope of these sites was 0.40 ± 0.04 (rise/ run, unitless). The 

average aspect for south-facing slopes was 173.3 ± 6.7oS by SW, and the average slope of 

these sites was 0.30 ± 0.007 (see Figure 2). The average fern density was 0.78 ± 0.050 

ferns/m2 and 0.04 ± 0.005 ferns/m2; n = 3, p = 0.003 on north and south-facing slopes, 

respectively. 

In January 2015, the average soil moisture at a depth of 15 cm (measured with the 

Campbell Hydrosense II) of north-facing field sites was 27 ± 1 %VWC and 26 ± 1 %VWC 

on south-facing slopes, and this difference was not significant (p =0.63, n = 20) (Figure 4). 

In March 2017, after a period of little to no rainfall, the average soil moisture at a depth of 30 

cm at the north-facing field sites was 29 ± 1 % by mass and 26 ± 1 % at south-facing field 

sites, and this difference was not significant (p =0.24, n = 15). The average soil moisture at 

15 cm was 33 ± 1 % on north-facing slopes and 28 ± 1 % on south-facing slopes, and this 

difference was significant (p =0.002, n = 9). On north-facing slopes, the water content of the 

top 15 cm of soil was significantly greater than the water content from 15-30 cm (p = 0.04), 

and this difference was not apparent on south-facing slopes (p =0.37). 
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Figure 4: Soil moisture as % water by mass at two different depths on north- and south-facing slopes in March 2017. 

Asterisk indicates significant difference between slopes at 15 cm depth (p = 0.002, n = 9). Slopes not followed by the same 

letter indicate a significant difference between sampling depths ((p =0.040 for north slopes, p = 0.370 for south slopes). 

Bars are means ± se. 

 

Light Environment on North- and South-Facing Slopes 

The light environment was significantly different between north- and south-facing 

slopes and between light sensors oriented in north- and south-facing directions. South-facing 

slopes received significantly more PAR than north-facing slopes for all three sensor 

orientations (see Figure 3 “surrogate fern”). On the south-facing slope, the sensor facing 

south received the highest levels of PAR of all six sensors. Conversely, on the north-facing 

slope, the sensor facing north received the lowest levels of PAR. The sensor oriented 

horizontally (pointing straight up) was intermediate between the two, but this orientation still 

received more PAR on the south facing slope. Note on all light figures the dramatic rise in 

PAR in late October after canopy senescence. 

0

5

10

15

20

25

30

35

40

S
o

il
 m

o
is

tu
re

 %
 b

y
 m

as
s

north south

*a

b b
b

15 cm                     30 cm 



14 

 

 
 

Figure 5: Total PAR reaching each sensor over 24-hour intervals (sensor orientation depicted in the upper-left corner of 

each figure). Note that the only difference between the two sensors was their position (north slope vs. south slope) the 

elevation, distance from the ridge, aspect, and angle relative to the vertical were identical.  

A 
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 The average daily minimum and daily maximum air temperature at 30 cm above the 

forest floor was not different between north- and south-facing slopes (Figure 6), but the light 

environment was (Figure 5). On the north-facing slope, there were 28 days during which the 

average daytime temperature did not rise above freezing (0.0oC). Of these cold days, there 

were 16 days in which the maximum light reaching the sensor oriented south (see Figure 5C) 

exceeded 500 µmol m-2 s-1, and the average daily maximum light was 1131.0 µmol m-2 s-1. 

Conversely, the sensor oriented north experienced 1 day in which the maximum light 

exceeded 500 µmol m-2 s-1 and an average daily maximum light of 539.1 µmol m-2 s-1.  

 

Table 1: Summary of light environment of “surrogate” ferns during days below freezing. Data were collected for 166 days 

total.  

Slope Sensor 
# of days 

≤ 0°C 

# of days in which temp ≤ 0°C  Average maximum light of days  ≤ 0°C  

and light > 500 µmol m-2 s-1  (µmol m-2 s-1) ± se  

South South Facing 28 22 1502 ± 109 

South North Facing 28 7 690 ± 48 

North South Facing 28 16 1131 ± 72 

North North Facing 28 1 539 

 

On the south-facing slope, there were 28 days at or below freezing, and of those days, there 

were 22 in which the maximum light reaching the sensor oriented south (see Figure 5A) 

exceeded 500 µmol m-2 s-1, and the average maximum light (the average of the highest light 

level recorded for each day below freezing) was 1501.5 µmol m-2 s-1. The sensor oriented 

north experienced 7 days in which the maximum light exceeded 500 µmol m-2 s-1 and the 

average maximum light was 690.3 µmol m-2 s-1. 
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Table 2: Maximum light experienced by surrogate ferns. Note that on the north-facing slope, the highest light is experienced 

in late winter. 

Sensor location 
Maximum light reading Corresponding 

Date Time 
(µmol m-2 s-1) temperature (°C) 

North Slope 

South Sensor 1674 1.3 3/3/2017 12:01:00 PM 

Perpendicular Sensor 1499 1.3 3/3/2017  11:55:40 AM 

North Sensor 539 1.3 3/3/2017  10:46:50 AM 

South Slope 

South Sensor 2063 17.3 2/23/2017 12:32:00 PM 

Perpendicular Sensor 1577 16.5 9/20/2016 1:15:40 PM 

North Sensor 908 3.7 1/10/2017  12:14:40 PM 

  

 

 

Figure 6: Maximum and minimum daily air temperatures on north- and south-facing slopes (measured 30 cm above the 

forest floor). 
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Physiological Measurements of Artificially Reoriented Fronds 

Initial measurements taken during the first week of October, 2016 of artificially-

reoriented (inclined) and prostrate fronds (allowed to reorient naturally) revealed no 

significant differences between Fv/Fm or chlorophyll concentration (Figure 8). On 

November 22nd, 2016, there were no significant differences in gas exchange between 

treatments.  By the first week of December, 2016, inclined fronds showed significant decline 

in Fv/Fm (inclined 0.693 ± 0.01, prostrate 0.765 ± 0.01 p ≤ 0.0001, n = 15), but no 

significant declines in total chlorophyll concentration (inclined = 30.6 ± 1.2 µg/ cm2, 

prostrate = 31.8 ± cm2 µg/ mL, p = 0.522, n = 15). Gas exchange was not measured at this 

time. There were no detectable differences in visible leaf necrosis between groups at this 

time, with all individuals bearing dark green, unblemished foliage. On February 10th 2017, 

inclined fronds exhibited further diminished Fv/Fm, while prostrate fronds showed little to 

no declines (inclined 0.600 ± 0.03, prostrate 0.762 ± 0.01 p ≤ 0.0001, n = 15). Conversely, 

chlorophyll concentration did not show significant declines in February (inclined = 27.72 ± 

1.8 µg/ cm2, prostrate = 31.2 ± 1.2 µg/ cm2, p = 0.143, n = 15). By March 25th, 2017, nearly 

100% of the foliage of inclined fronds was necrotic or discolored, while the foliage of the 

control group was still dark green. Fv/Fm declined further in both inclined and prostrate 

fronds (inclined 0.482 ± 0.02, prostrate 0.666 ± 0.02 p ≤ 0.0001, n = 15). At this time total 

chlorophyll declined in inclined fronds, and was significantly lower than prostrate fronds 

(inclined = 23.25 ± 1.2 µg/ cm2, prostrate = 9.32 ± 0.4 µg/ cm2, p = 0.007, n = 15). Inclined 

fronds had significantly lower rates of photosynthesis than prostrate fronds (inclined = 0.523 

± 0.2 µmol m-2 s-1, prostrate = 2.79 ± 0.2 µmol m-2 s-1, p < 0.0001, n = 15).  
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Figure 7: Representative photographs of inclined and prostrate ferns over winter. The control group (prostrate) is depicted 

in the left of each frame and the treatment group (inclined) is depicted in the right of each frame. 

Point measurements of surface temperature indicated that inclined fronds were 

significantly warmer than prostrate fronds (inclined = 5.86 ± 0.75 oC vs. prostrate = 2.96 ± 

0.76 oC, p = 0.0007, n = 15). Ambient temperature at the time of measurement was -3.6 oC 

and the slope was in full sun (11:30 h).  

Visible leaf necrosis presented in the treatment group by late December and 

progressed into spring, with some fronds bearing an estimated 90-100% necrotic foliage, 

while the control group showed no such necrosis and continued to bear dark green foliage 

well into March (Figure 7). 
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Figure 8A: Total chlorophyll concentration over winter. Measurements taken October 9th, 2016; December 17th, 2016; 

February 10th, 2017; March 5th, 2017. Figure 8B: Chlorophyll fluorescence (Fv/Fm) of prostrate (control) fronds and 

inclined fronds over winter. Measurements taken October 1st, 2016; December 8th, 2016; February 10th, 2017; March 25th, 

2017. Figure 8C: Photosynthesis of prostrate (control) fronds and inclined fronds over winter. Measurements were made on 

November 22nd, 2016 and March 25th, 2017. Asterisks indicate significant difference (p ≤ 0.05, n =15). Bars not followed by 

the same letter indicate a significant difference between sampling dates (p =0.24 for prostrate fronds, p < 0.00001 for 

inclined fronds). Bars are means ± se. 

A 

B 
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Greenhouse Dry-down 

 Soil moisture (%VWC) of potted plants declined monotonically before approaching 

zero around 20 days after watering was withheld. Significant differences in soil moisture 

became apparent by day 3 of the experiment (p = 0.02) and continued to diverge (Figure 

10A). The mean soil moisture of the control group (watered daily) was 31.2 % for the 

duration of the experiment.  

 

 

Figure 9: Water potential (ψf) as a function of soil moisture.  

 

Midday frond water potential (ψf) varied with environmental conditions inside the 

greenhouse, and did not follow a monotonic trend during the dry-down, but significant 

differences in the treatment and control group manifested after 4 days of water deprivation (p 

< 0.0001). Once ψf reached about -1.0 MPa, they plateaued and did not become anymore 

negative. Well-watered fronds continued to maintain about 0.4 MPa higher ψf over this 

interval (Figure 10B). A regression analysis showed that water potential (ψf) linearly tracked 

soil moisture, with declines in soil moisture corresponding with proportional declines in 

water potential (r2 = 0.79) (Figure 9). 
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Figure 10: Soil moisture (%VWC) of potted plants declined linearly before approaching zero around 20 days after watering 

was withheld. Significant differences in soil moisture became apparent by day 3 of the experiment (p = 0.02, n = 10) and 

continued to diverge. Error bars = standard error. Midday frond water potential (ψf). (p < 0.0001, n = 10) and continued to 

diverge. Bars are means ± se. Stomatal conductance (gs) of watered and droughted plants. (p ≤ 0.05, n = 10). Markers are 

means ± se. Photosynthesis (A). (p ≤ 0.05, n =10). Bars are means ± se. 
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The stomatal conductances (gs) data for days 3 and 4 for the watered group were 

discarded because the leaflets were wet during measurements. Significant differences 

between watered and drying ferns manifested on day 7, though the magnitude of this 

difference was variable over time. Such low conductances made determining drought impacts 

difficult as the rates were near the lowest levels able to be measured by the Li-6800 (Figure 

10C and 10D).  
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Discussion 

 

Microclimate data indicated that the most significant difference between north-and 

south-facing slopes was the amount of winter light received, with south-facing slopes 

receiving much more light than north-facing slopes, while temperature and water availability 

were comparable. These results generally agree with other studies of aspect-induced 

differences in microclimate (Werling & Tajchman, 1984; Desta, et al., 2004; Holst et al., 

2005; Warren, 2008; Pauli et al., 2013; Neufeld & Young, 2014). The surrogate fern 

scaffolding revealed that the light environment is different for fronds at different orientations 

and that these differences are modified by being on either a north- or south-facing slope. 

Inclined fronds facing south received much more incident light than fronds facing north and 

fronds facing straight up, particularly in winter. These data indicate that a prostrate frond on 

a north-facing slope (parallel to the slope) would receive less light, and that frond 

reorientation dramatically changes the light environment. This difference in microclimate is 

important because artificially-reoriented (inclined) fronds suffered significant physiological 

declines during winter, and these declines are likely due to photoinhibition caused by high 

light and low temperatures observed during winter (Raven, 1989; Long et al., 1994; Adams 

et al., 2004; Tessier, 2014). Since declines were relatively slight in the control group, the data 

support the hypothesis that frond reorientation in Christmas fern confers the advantage of 

photoprotection by decreasing the angle of incident light during cold, bright days in winter 

when foliage is vulnerable to photoinhibition. Conceptually, reorientation would not confer 
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this advantage on south-facing slopes, as it would likely increase the incident angle (Figure 

18). However, as Givnish (1982, 1986) and Neufeld and Young (2014) note, the temperature 

of prostrate fronds on north-facing slopes can be up to 6oC colder in the morning than 

inclined fronds, while they can be 6oC warmer in the afternoon. Presently, it is unclear how 

much protection this thermal boundary layer affords on sunny winter days, and frond 

reorientation is likely driven by a combination of factors in addition to photoprotection.   

 

Figure 11: Conceptual illustration of frond reorientation as a photoprotective strategy on north-facing slopes, reducing 

incident angle of radiation. On a south-facing slope, the angle of incidence is more direct, so reorientation would actually 

increase PAR reaching the plant.   

 

 I predicted that southern exposures would be warmer, brighter, and drier than north-

facing slopes. After collecting microclimate data for nearly a year, I found that southern 

exposures received significantly more light throughout the day, especially during the winter 

months. Surprisingly, the greater solar input did not correspond with a significant difference 

in the maximum or minimum daily air temperature at 30 cm above the forest floor, meaning 
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that on a typical day, a fern on the north slope would experience a similar temperature regime 

as it would on a south slope, yet significantly less light. I chose to look at daily extremes 

(maximum and minimum) rather than averages because they are the distribution-limiting 

factor. Extreme events are important because a lethal environment only needs to arise 

periodically to limit distribution (Asada, 1999; Melis, 1999; Anderegg et al., 2012). The data 

support the hypothesis that the microclimate between slopes varies with respect to light, 

temperature, and soil moisture, and winter light is the most significant difference.  

I hypothesized that Christmas fern is highly sensitive to drought stress, and its 

preference for north-facing slopes may be explained by differences in water availability or 

evaporative demand between north- and south-facing slopes. While microclimate data 

established that soil water availability was lower on south-facing slopes, at least at 15 cm 

depth, analogous conditions produced during the greenhouse dry-down experiment did not 

correspond to markers of physiological stress in Christmas fern. The results of the dry-down 

suggest that, at least in the short-term, Christmas fern during the fall, winter and spring 

months, would not be limited by water availability on south-facing slopes. It remains to be 

seen if soils become significantly drier on south-facing slopes during the hottest portion of 

the year in July and August. 

The surprising drought tolerance of Christmas fern may be a result of its life history 

strategy, particularly the wintergreen nature of its foliage. Similar patterns of drought 

tolerance in other ferns have been found in dry-down studies (Zhang et al., 2009) and these 

authors also noted complete stomatal closure after drought became severe, which would 

coincide with my results and the finding that water potentials did not decrease further after 

reaching about -1.0 MPa. Similar results were found by Holmlund et al. (2016) in the field 
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during the historic California drought between 2012 and 2016. There, evergreen species 

adapted to either riparian or chaparral habitats maintained their foliar water potentials above -

1.3 MPa, similar to the level that my Christmas ferns did in the drought experiment. 

McAdam and Brodribb (2013) also noted that stomata in most fern species are sensitive to 

drought, possibly because they rely more on hydropassive signals for closure rather than 

hydroactive via the hormone ABA, but more recent evidence indicates that fern stomatal 

responses may be more complex than first thought (Horak et al., 2017). Pittermann et al. 

(2011) and Brodersen et al. (2012, 2015) found that an examination of xylem structure alone 

could not sufficiently explain the resistance to cavitation in some species of perennial ferns 

which experience seasonal drought. Similarly, one species aptly named “resurrection fern” 

(Pleopeltis polypodioides) capable of withstanding severe drought by completely closing 

stomata (John & Hasenstein 2017), due in part to peltate scales on the pinnae (John & 

Hasenstein 2017) and can tolerate losing up to 95% of their water content (John & 

Hasenstein 2017). The presence of high light when desiccated has been found to contribute to 

photoinhibition in this species (Muslin & Homann, 1992), which suggests that a combination 

of drought and high light, such as could occur during the winter on south-facing slopes, could 

be detrimental to Christmas ferns also. However, in a drought study of tree ferns, with two 

species differing in shade tolerance, there was little impact of light level on drought tolerance 

(Volkova et al., 2010). Furthermore, Baer, et al., (2016) have suggested that perennial ferns 

may have “capacitance” or the ability to store water in the rhizomes and slowly release it to 

the leaves during drought. As Christmas fern overwinters, it may experience drought-like 

conditions due to increased evaporative demand on warm winter days, or to desiccation on 

cold, low humidity days, especially when the soils are frozen and the plant cannot take up 
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water from the soil or transport it to the fronds from the rhizome. This would be especially so 

for inclined fronds because they would be exposed to higher light and wind and this may be 

one reason this species re-orients its fronds to lie prostrate on the forest floor. This may also 

help restore water content to desiccated leaves in the winter, because prostrate fronds would 

be more likely to be moist by lying in the boundary layer of the forest floor, and to retain 

water on their pinnae after rains or conditions that produce dew, and under such conditions, 

they can absorb water directly through their leaf surfaces (Limm et al., 2009, Schwerbrock & 

Leuschner 2017).  
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Conclusion 

 

In summary, the goal of this research was to disentangle the abiotic factors driving 

the asymmetrical distribution of Christmas fern on north- and south-facing slopes, and to 

elucidate the benefits, if any, of frond reorientation during winter. I conclude that frond 

reorientation confers the advantage of photoprotection during winter, though there may be 

other selective pressures driving this behavior. Similarly, this behavior would not offer 

refuge from high light on south-facing slopes, and the vulnerability of this species to high 

light may be a principle determinant of its distribution on the landscape. Christmas fern 

showed surprising tolerance to drought during a controlled dry-down,. At this point, I 

conclude that winter light plays a major role in driving both frond reorientation and the 

distribution of Christmas fern on the landscape in the southern Appalachian Mountains. 

Drought, and in particular, summer drought, may further contribute to the asymmetric 

distribution of this species on slopes in the southern Appalachian Mountains. Future research 

should further investigate Christmas fern water relations and especially those in the summer 

when drought conditions may be maximized so as to firmly establish its drought sensitivity 

and the role of water relations in driving its habitat distribution.  

Forecasted climate change in our region is expected to decrease water availability in 

the understory due to reduced rainfall and increased evaporative demand on forests (IPCC 

Working Group, 2013, Wiens, 2016). Coupled with higher temperatures, the distribution of 

Christmas fern may shift toward more mesic habitats such as stream and riverbanks. 
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Although ferns are highly adaptable, and Christmas fern does exceptionally well in a 

spectrum of habitats along the east coast of North America, it is not clear if  phenotypic 

plasticity can produce enough local adaptation to outpace shifts in climate. Christmas fern 

may persist (Agrawal et al., 2004; Flinn, 2006; Colautti & Barrett, 2013) in a future high 

CO2, warmer and drier world, but the necessity of a cold period in Christmas fern phenology, 

or increases in canopy density and a shrinking vernal window may offset these gains (Allen 

& Breshears, 1998; Bernhardt-Römermann et al., 2015).  
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